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ABSTRACT
This paper describes a strategy for verifying data-hazard correct-
ness of out-of-order processors that implement register-renaming.
We define a set of predicates to characterize register-renaming tech-
niques and provide a set of model-checking obligations that are
sufficient to guarantee that a register-renaming technique satisfies
data-hazard correctness. We demonstrate how two register renam-
ing techniques (retirement-register-file and dual-RAT) instantiate
our predicates, and present model checking results for the Dual-
RAT technique, which is based on the Intel Pentium R© 4 processor.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Verification; C.1.1 [Computer Systems Or-
ganization]: Register renaming; I.2.3 [Deduction and Theorem
Proving]: Theorem proving and model checking

General Terms
Verification, Algorithms, Experimentation

Keywords
Register renaming, Formal design verification, Pipelined circuits.

1. INTRODUCTION
This paper describes a strategy for verifying data-hazard correct-

ness for out-of-order processors that implement register renaming.
We begin with a general definition of data-hazard correctness, and
decompose it into thirty verification obligations that give sufficient
conditions for correctness of register-renaming techniques. These
conditions are designed to hold for register-renaming techniques in
general, and to be model-checked efficiently.

PipeOk is a formal definition of correctness for pipelined cir-
cuits. It is based on the conventional concepts of structural haz-
ards, control hazards, data hazards, and datapath functionality [1].
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PipeOk guarantees both Burch-Dill flushing correctness [4] and
flushpoint-equality correctness (i.e., testing that the implementa-
tion matches the specification whenever the implementation is in a
flushed state).

PipeOk contains thirteen correctness properties: three for struc-
tural hazards, six for data hazards, one for datapath functional-
ity, and three for flushing. Control hazards are incorporated into
both structural and data hazards. Because the properties are rela-
tively orthogonal in the behavior they describe, different properties
are amenable to different verification and abstraction techniques,
which helps improve the scalability of the verification. The PipeOk
formalization of pipelines augments a state machine with pipeline-
specific functions and predicates, such as the map between imple-
mentation variables and specification variables. The PipeOk de-
composition into multiple properties is based upon characterizing
the required behaviour of the functions and predicates.

We define a generic high-level-model of out-of-order processors
that captures data-dependency behaviour for register renaming. Us-
ing this model, we instantiate the PipeOk functions and predicates
with predicates that capture behaviour that is common to register
renaming techniques in general, such as busy and valid bits for
each physical storage location. Based on these register renaming
predicates, we decompose the six data-hazard correctness proper-
ties of PipeOk into thirty model checking obligations. We have
proved that any register-renaming technique that satisfies our thirty
obligations is guaranteed to satisfy the six data-hazard correctness
properties in PipeOk. All but one of our obligations is an invari-
ant or a single-step property. The one remaining obligations can be
further decomposed using implementation-specific information.

To validate the generality of our approach, we have used our
register-renaming predicates and functions to model register-renam-
ing techniques based on the Control Data 6600 scoreboard [15], the
original Tomasulo algorithm [16], renaming with a reorder buffer
and retirement register file (RRF), and the Intel Pentium R© 4 pro-
cessor [5]. We call this last technique “Dual RAT” register renam-
ing, because two Register Alias Tables are used. Similar techniques
were used on the MIPs R10000 [18] and Alpha 21264 [8]. In Sec-
tion 3, we explain our models of the two most complex, and com-
mon, techniques: RRF and Dual-RAT.

To validate the effectiveness of our approach, we used our obli-
gations to verify the Dual-RAT register renaming algorithm (Sec-
tion 4). We chose the Dual-RAT technique, because of its novelty
and because it posed new verification challenges in model check-
ing complexity and in relating the implementation to the specifica-
tion. Our model preserves behavior related to register renaming,
but abstracts away behavior related to datapath computation, con-
trol hazards, and structural hazards. For an implementation with
five physical registers and two architected registers, all but one of
the obligations can be verified in under an hour total.
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2. DATA-HAZARD CORRECTNESS
Of the thirteen properties in PipeOk, the six listed below are for

data-hazard correctness. Together, these six properties guarantee
that all producer-consumer data-dependencies in the specification
are obeyed in the implementation [1].

RawHazOk Read-after-write orderings in the specification are pre-
served in the implementation.

WawHazOk Write-after-write orderings in the specification are
preserved in the implementation.

WarHazOk Write-after-read orderings in the specification are pre-
served in the implementation.

SpecRdTotFun Each read operation in the specification corr-
esponds to exactly one read operation in the implementation.

SpecWrTotFun Each write operation in the specification corre-
sponds to at least one write operation in the implementation,
and to at most one write operation per implementation stor-
age location.

ImplWrTotFun Each write operation in the implementation that
can be read corresponds to exactly one write operation in the
specification.

The PipeOk correctness properties are written in terms of predi-
cates and functions that are instantiated by each pipeline. The data-
hazard properties are written in terms of five predicates: a speci-
fication write (Wrs), a specification read (Rds), an implementa-
tion write (Wri), an implementation read (Rdi), and an address
map (AM) to relate the address/index of read and write operations
in the implementation to their corresponding address/index in the
specification.

3. MODELLING REGISTER RENAMING
In this section, we describe our generic model of register re-

naming, and then demonstrate how this model can be instantiated
for retirement-register-file (RRF) register renaming and Dual-RAT
register renaming. Our model is focused on data-dependency be-
havior. We abstract away details that are irrelevant to data-hazard
correctness: for example, we do not model structural or control
hazards and each instruction contains only one source operand.

3.1 Generic Processor for Register Renaming
Our processor model contains six pipeline units and a data-storage

module (Figure 1). The pipeline units may themselves be pipelined
and may produce instructions out of order. Read operations oc-
cur at the time of dispatch. The instantiation of implementation
write is dependent upon the register renaming technique, and so
is defined separately in Sections 3.2 and 3.3. A physical register
becomes busy when it is allocated as a physical destination. The
register becomes valid at writeback. After an instruction retires,
its destination is marked as not busy. The register remains valid
(i.e. represents the committed state) until the retirement of a subse-
quent instruction with the same architectural destination. After the
register is neither valid nor busy, it is freed and can be reallocated.

We first define three predicates to capture concisely the behaviour
on the ports of the pipeline units (Table 1). We use the port pred-
icates to instantiate the PipeOk predicates Rds, Wrs, Rdi, and
AM for data hazards (Table 2). The instantiation of implementa-
tion write is dependent upon the register renaming technique, and
so is defined separately in Sections 3.2 and 3.3. Read and write op-
erations occur in the specification when the implementation issues
the corresponding instruction. In the implementation, read opera-
tions occur at the time of dispatch.
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Figure 1: Processor for general register renaming

Port predicates
Bubble exiting unit u

Bu(t : Time) ≡ bubbleu(t)
Physical destination of instruction exiting unit u

Du(t : Time, h : PhysIdx) ≡ (h = phy dst
u
(t)) ∧ ¬Bu(t)

Physical source of instruction exiting unit u

Su(t : Time, h : PhysIdx) ≡ (h = phy src
u
(t)) ∧ ¬Bu(t)

Table 1: Port predicate shortcuts

Instantiations of data-hazard predicates
Specification read
Rds(t : Time, m : ArchIdx) ≡ SFD(t, m)
Specification write
Wrs(t : Time,m : ArchIdx) ≡ DFD(t, m)
Implementation read
Rdi(t : Time, h : PhysIdx) ≡ SSD(t, h)

Table 2: Generic register-renaming predicates

Each register renaming technique provides its own instantiation
of the the pipeline units and data-storage module. In our generic
model, the pipeline units are characterized by the interface signals
in Figure 1, such as phy srcRR , which is the physical source index
output from the renaming unit. The data-storage module contains
register-alias tables, the register file, the reorder buffer, etc. The
data-storage module is characterized by three predicates for each
physical register: K : busy, L : valid, and M : speculative mapping
between an architectural register and physical register. By “phys-
ical register”, we mean any physical storage location: entries in
reorder buffer, register-rename files, speculative register files, re-
tirement register files, and pooled register files.

3.2 Retirement-Register-File Renaming
The most common register-renaming technique in formal veri-

fication papers is the retirement-register-file (RRF) technique. Al-
though often called “Tomasulo’s algorithm”, RRF renaming dif-
fers from Tomasulo’s original algorithm as implemented on the
IBM 360/91 [16]. RRF register renaming uses a register-alias table
(RAT), reorder buffer (ROB), and retirement register file (RRF).
The RRF maintains the committed state for the architected regis-
ters. Speculative results are stored in the ROB, pending retirement.
The RAT represents the speculative state of the architected registers
by mapping each architected register to either the register file (no
in-flight instruction will write to the register) or to an entry in the
ROB.
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Table 3 gives the RRF instantiations of the register-renaming
predicates. Implementation writes to the ROB are done in the write-
back unit and writes to the RRF are done when the instruction
retires (exits the ROB). A ROB entry is busy (corresponds to an
in-flight instruction) if it is between the head and tail pointers. A
register-file entry is busy if the ROB entry pointed to by the FRAT
is busy. A ROB entry is valid if it is busy and its valid bit is true.
The validity of a register file entry is determined directly by its
valid bit. The FRAT mapping points to either the register file or the
ROB, depending on whether the register file entry is valid.

Wri(t : Time, h : RobIdx) ≡ DEX(t, h)
Wri(t : Time, h : RFIdx) ≡ DWB(t, h)
�
(t : Time, h : RobIdx) ≡ Hd(t) > h ≥ Tl(t)

�
(t : Time, h : RFIdx) ≡

Hd(t) > Rat[h](t) ≥ Tl(t)
�

(t : Time, h : RobIdx) ≡
�
(t, h) ∧ Rob[h].v(t)

�
(t : Time, h : RFIdx) ≡ RF[h].v(t)

�
(t : Time, h : RFIdx, m : ArchIdx) ≡

if RF[m].v(t) then h = m else h = Rat[h](t)
AM(t : Time, h : RFIdx,m : ArchIdx) ≡ h = m

AM(t : Time, h : RobIdx, m : ArchIdx) ≡
�
(t, h) ∧

�
(t, h,m)

Table 3: Instantiations of register-renaming for RRF

3.3 Dual-RAT Renaming
As its name implies, the Dual-RAT register-renaming technique

uses two register-alias tables: a front-end register-alias table (FRAT)
and a rear register-alias table (RRAT). The FRAT serves the same
purpose as the RAT in the RRF renaming technique: it maintains a
mapping from architected registers to speculative state. Both spec-
ulative and committed state are stored in the same physical register
file. The RRAT is updated when an instruction retires.

Each physical register has a valid bit, busy bit, and an index for
the architected register that it represents. Storing the architected
index in the register file, rather than in the ROB, eliminates one
need for a CAM match on the ROB. The size of the ROB is equal
to the difference between the number of physical and architected
registers, because the ROB holds information only for in-flight in-
structions.

Table 4 lists the Dual-RAT instantiations of the register-renaming
predicates. Implementation writes happen only in the writeback
unit. The register file has busy and valid bits. The FRAT always
maps architected registers to physical registers, as opposed to RRF
renaming, where the RAT mapped architected registers to either
the RRF or the ROB. For the address map, if the physical regis-
ter is busy (instruction is in flight) then we use the register file to
lookup the architected index. If the instruction has already retired,
we need to be sure that it has not been superseded by a more recent
instruction writing to the same architected register, so we check the
RRAT.

Instantations of register-renaming for Dual-RAT
Wri(t : Time, h : PhysIdx) ≡ DEX(t, h)
�
(t : Time, h : PhysIdx) ≡ RF[h].b(t)

�
(t : Time, h : PhysIdx) ≡ RF[h].v(t)

�
(t : Time, h : PhysIdx,m : ArchIdx) ≡ FRat[m](t) = h

AM(t : Time, h : PhysIdx,m : ArchIdx) ≡

if
�
(t, h) then m = RF[h].a(t) else h = RRat[m](t)

Table 4: Predicates for Dual-RAT

4. VERIFICATION
For register renaming techniques, write-after-write and write-

after-read ordering correctness properties are easy to prove by show-
ing that a register will be allocated only if there are no in-flight in-
structions with it as a destination. The challenge lies in the remain-
ing four properties: read-after-write correctness and three proper-
ties for a one-to-one mapping between read and write operations in
the specification and implementation.

Each of the data-hazard properties uses nested “eventually” and
“until” temporal operators and refers to the behaviour of the en-
tire system. To make it feasible to use model checking to verify
the behaviour of a register-renaming algorithm, we decomposed
the data-hazard correctness properties into thirty model checking
obligations. Each obligation refers only to a few units in the pro-
cessor and all except one obligation are either invariants or single-
step properties [14]. This one property can be decomposed into
invariants and single step properties by exposing implementation-
specific details about the ROB. Because our goal was to create a
decomposition that would hold for any renaming technique, we did
not decompose this obligation any further.

To validate the effectiveness of our decomposition strategy, we
verified a high-level model of the Dual-RAT algorithm. This algo-
rithm poses new verification challenges in specification and model-
checking complexity. In RRF renaming, the physical destination is
identical to the ROB index and the relative age of two instructions
is determined by the relative positions of their physical destinations
and the head and tail pointers in the ROB. In Dual-RAT renaming,
the physical destination is independent of the ROB entry. Compar-
ing the ages of two instructions requires a CAM match on the ROB,
which is expensive in model checking. Another complication arises
from the lack of an architected-register file. Projecting the exter-
nally visible state of the implementation requires a data-dependent
projection function. For each architected register, we must use the
RRAT to look up the corresponding physical register. The address
map function in PipeOk, which was originally designed for bypass
paths, works equally well for the dynamic mapping between com-
mitted physical registers and architected registers.

Our model implements the units (register-rename, write-back,
and reorder/retire) that interact with the storage module. For the
other three units (fetch/decode, schedule/dispatch, and execute),
we have defined characteristic properties, such as liveness and a
one-to-one mapping between entering and exiting instructions, that
serve as sufficient environmental assumptions for our verification.

Figure 2 shows the BDD sizes of each obligation (sorted by
increasing size) for different numbers of architected and physical
registers. The most space-consuming configuration that we could
run reasonably was 2 architected registers and 6 physical registers
(2x6). For the most complex of these obligations, the BDDs peaked
at around 30M nodes and runtimes peaked at about 10 hours on an
1.8GHz Intel Pentium R© III processor. Ignoring the four simplest
obligations, there is a factor of about 20 between the largest and
smallest obligations for a given configuration. Given the breadth
of obligations verified, this seems reasonable. A smaller spread
would be desirable, but additional, specialized, decomposition is
always possible if an obligation exceeds available memory or time.
In conducting the model checking, the only assumption that was
needed was that the fetch/decode unit outputs an instruction only
if there is a free register. The other assumptions were used in the
proof. The average six largest obligations (14, 16, 30, 29, 12, and
11) are distinguished by referring to a specification operation and
the FRAT. This indicates that a fruitful place to look for further de-
composition might be in the interaction between fetch/decode and
register-rename.
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“nxk” means n architected registers and k physical registers.

Figure 2: BDD sizes of model-checking obligations

5. CONCLUSION
We have developed a general decomposition strategy for verify-

ing data-hazard correctness of register-renaming techniques. We
demonstrated the generality and effectiveness of our strategy by
modeling the retirement register file and both modeling and verify-
ing Dual-RAT register-renaming.

High-level models of the original Tomasulo algorithm have been
verified by McMillan [11], Berezin [3], and Arons and Pnueli [2].
High-level models of register renaming with a reorder buffer and
retirement register file (RRF) have been verified by Skakkebæk,
Jones, and Dill [7], Pnueli and Arons [12], Hosabettu, Srivas, and
Gopalakrishnan [6], Sawada and Hunt [13], Velev [17], and Lahiri
and Bryant [9]. For both Tomasulo’s algorithm and RRF renam-
ing, when the processor is flushed, the projection from the imple-
mentation state to the specification state is just a direct projection
of the register file and other state variables, such as the program
counter. For Dual-RAT register renaming, even when the machine
is flushed, the mapping from implementation state to architectural
state is data-dependent: the RRAT must be used to determine the
mapping between physical and architected registers. The only pre-
vious use of a data-dependent address map in processor verification
was by Arons and Pnueli [12]. Their map chose between the reset
value and the actual value of the state, depending on whether the
machine is flushed. A second challenge in verifying Dual-RAT reg-
ister renaming is that determining the program order (i.e., age) of
two instructions requires a CAM match on the reorder buffer, rather
than just comparing the physical destinations of the instructions to
the head and tail pointers in the ROB. CAM matches are expensive,
both in hardware and in model checking.

All of our model-checking obligations are safety properties; all
but one are either invariants or single-step properties. We were
able to verify the obligations without resorting to structural de-
composition or assume-guarantee reasoning. The environmental
assumptions about the unimplemented units (fetch/decode, sched-
ule/dispatch, and execute) were used in the proof that the model-
checking obligations guarantee data-hazard correctness. For our
model, only one environmental assumption was needed in conduct-
ing the model checking. These features helped reduce the complex-
ity of model checking, and should be beneficial in verifying other
implementations of register renaming.

Our model checking obligations are defined in terms of behavior
at the interface between units. This makes the obligations rela-

tively insensitive to low-level design optimizations or changes. We
hope that the obligations are understandable and might be helpful
in creating test plans and evaluating the correctness of new register
renaming algorithms.

6. REFERENCES
[1] M. D. Aagaard. A hazards-based correctness statement for

pipelined circuits. In CHARME, pp 66–80. 2003.
[2] T. Arons and A. Pnueli. Verifying Tomasulo’s algorithm by

refinement. In Int’l Conf. on VLSI Design, pp 92–99, 1999.
[3] S. Berezin, et al. Combining symbolic model checking with

uninterpreted functions for out-of-order processor
verification. In FMCAD, pp 369–386. 1998.

[4] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In CAV, pp 68–70. 1994.

[5] G. Hinton, D. Sager, U. Mike, and D. Boggs. The
microarchitecture of the Pentium R© 4 processor. Intel Tech.
Jour., Q1, Feb. 2001.

[6] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of
correctness of a processor with reorder buffer using the
completion functions approach. In CAV, pp 47–59. 1999.

[7] R. Jones, J. Skakkebæk, and D. Dill. Reducing manual
abstraction in formal verification of out-of-order execution.
In FMCAD, pp 2–17. 1998.

[8] R. E. Kessler. The Alpha 21264 microprocessor. IEEE
Micro, 19(2):24–36, Mar/Apr 1999.

[9] S. Lahiri and R. E. Bryant. Deductive verification of
advanced out-of-order microprocessors. In CAV, pp 341–354.
2003.

[10] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[11] K. McMillan. Verification of an implementation of
Tomasulo’s algorithm by compositional model checking. In
CAV, pp 110–121. 1998.

[12] A. Pnueli and T. Arons. Verification of data-insensitive
circuits: An in-order-retirement case study. In FMCAD, pp
351–368. 1998.

[13] J. Sawada and W. A. Hunt. Verifying the FM9801
microarchitecture. IEEE Micro, 19(3):47–55, May/June
1999.

[14] H. I. Shehata and M. D. Aagaard. A verification strategy for
register renaming (extended version). Technical report
2004-12, E&CE, Univ. of Waterloo, Mar. 2004.

[15] J. E. Thornton. Parallel operation in the Control Data 6600.
In Proc. of the AFIPS, vol II, volume 26, pp 33–40, 1964.

[16] R. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Jour. of Res. and Dev., 11:25–33, Jan.
1967.

[17] M. N. Velev. Using rewriting rules and positive equality to
formally verify wide-issue out-of-order microprocessors
with a reorder buffer. In DATE, pp 28–35, Mar. 2002.

[18] K. C. Yeager. The MIPS R10000 superscalar microprocessor.
IEEE Micro, 16(2):28–40, Apr. 1996.

237


